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ABSTRACT

In the early phases of the materiel acquisition process,

SubJect Matter Experts (SMEs) may be the only source for data on a

conceptual weapon system. In these early phases, the Early
Comparability Analysis (ECA) Methodology provides a tool for
identifying the Manpower, Personnel, and Training (MPT) resource

intensive tasks (e.g., the *high drivers') on currently fielded

systems that the conceptual system will replace. Various documents
related to Manpower and Personnel Integration (MANPRINT) and the

Concept Formulation Process (CFP) discuss risk and uncertainty. By

expanding these concepts and using some theoretical considerations,
the ECA method can be extended to provide a probabilistic estimate

of the uncertainty of the SME's opinion and the risk of the

proposed system. The process which determines the risk and
uncertainty probabilities can then be worked 'backward* to

determine the high drivers as well as the source for risk and
uncertainty. Hypothetical data from a very small sample of SMEs is
used to illustrate the risk/uncertainty process. The method

incorporates a consideration for 'importance' values or weights in

the determination of risk/uncertainty values probabilities.
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RISK AND UNCERTAINTY IN EARLY COMPARABILITY ANALYSIS

I. BACKGROUND:

According to AR 802-2. ManDower and Personnel Inte~ration
(MANPRINT) in the Materiel Acquisition Process, the purpose of the
MANPRINT philosophy is to provide a systematic approach to gather-
in$ information to answer the question: "can this soldier, with
this training, per'orm these tasks to these standards under these
conditions?" In the early phases of the materiel acquisition
process, there may be a lack of engineering or other *hard* data on
the proposed system, so a 'comparability analysis* may be
required. Data are usually obtained from Subject Matter Experts
(SMEs) as well as other sources (such as sample data collecti4n on
the predecessor system which is to be replaced). Typically, these
front-end analyses which are performed during the pre-concept
phases of the system design will focus on the predecessor system
and on lessons learned.

The Early Comparability Analysis (ECA) methodology, according
to the ECA Handbook (Reference b(2)), is a "lessons learned"
approach to identify the Manpower, Personnel, and Training (MPT)
resource intensive tasks (*high drivers') on currently fielded
materiel systems that must be resolved in now or product improved
systems. Thus, a major focus of the ECA methodology is on the
*task.' This handbook illustrates a procedure for identifying high
drivers by using SMES and other data and some easy arithmetic
calculations.

The draft MANPRINT Analysis Methodology (Reference b(3)) shows
that ECA is a part of the pro-concept, pro-milestone zero, phase of
MANPRINT activities and is one of several processes which 'feed'
the development of the System MANPRINT Management Plan (SMMP). As
issues arise, the SMMP documents them. As the issues are
addressed, the SMMP is updated, thus resulting in a 'living
document' which changes as the state of knowledge changes for the
proposed new system.

To get an indication of uncertainty, we look at the Concept
Formulation Process (CFP) Memorandum of Instruction (MOI) (See
Reference b(5)). The purpose of an uncertainty analysis is 'to put
a range of probabilities around the estimate at a specific level of
confidence; i.e., to bound the estimate.' Thus, uncertainty
involves the estimation of a value and the likely or probable range
of values that. can occur. When we define a critical value for some
system performance measurement, any value which exceeds that
critical value is an indication of an unacceptable condition.
Thus, if there is a range of likely or probable values which exceed
the critical value, the range of all such values is an indication
of the risk probability.



The MANPRINT Risk Assessment (MRA) Guide (Reference b(1)),
contains a procedural 'tool to evaluate MANPRINT risk associated
with the development of an emerging materiel system.* The user of
this guide can obtain an indication of the 'risk* of a conceptual
system by answering a series of Yes-No questions. As in the MRA.
the risk methodology in this report is applicable to systems in the
early concept phase. Both methods can be used to identify the need
for further analyses or voids in understanding. However, the
methodology in this report will also provide a probability estimate
of the degree of risk associated with the system, a specific task,
and the components of each task.

We will look at uncertainty and risk from an ECA standpoint.
From the previous observations, we see that the discussion will
focus on tanks ard a set of criteria for evaluating task
performance. Risk and uncertainty will be evaluated with respect
to estimated values of task performance which exceed some critical
level of overall acceptable performance. An example will be given
using Judgements from five SMEs, but the methodology is appropriate
for much larger samples of SMEs. Indeed, statistical results are
much more reliable when larger samples (in the range of 20 to 30
SME) are used.

Although the procedures discussed herein use the initial SMS
results, there are techniques (such as the Delphi Method) for
allowing the "experts" to use additional information to 'refine*
their opinion (and hence, estimLtes). The oiject of the risk-
uncertainty analymiii should be to use all of the information
available and not to exclude someone's opinion simply because it is
not the same as other estimates.

2. INTRODUCTION.

We will use the data in Chapter 4 of (draft) TRADOC Pam 802-1
(Early Comparability Analysis Procedural Guide) to illustrate
several features of an ECA which can provide additional insight to
decision makers. Although the ECA manual strongly suggests a
minimum sample of ten SME, the procedures are illustrated below and
in the ECA manual using only five SMEs. First, let us review the
ECA methodology, the data, and how it was collected because these
are important corsiderations in the validity of the insights which
we will subsequently address.

The ECA methodology depends heavily on soliciting information
from Subject Matter Experts (SMEs). Most often, the SMEs will be
soldiers in the Military Occupational Specialties (MOS) that either
operate or matntain the predecessor system. In the very early
phases of the system acquisition process, ECA may be applied to the
conceptual system. However, SME opinion may be the only way for
collecting data for an ECA on a conceptual system and is a very
appropriate source if the SMEs are truly 'experts.' Step 3 of the
ECA methodology calls for compiling a list of tasks. Step 4 calls
for collecting data from the SMEs using a well-defined structured
approach whereby the SMEs rate each task on each of six criteria.
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For an ECA for which there is a predecessor system, a myriad of
data in addition to SME opinion should also be available. The six
criteria are rated on a variable scale, with possible values
between one and four. A score of 'one' usually is a *desirable*
rating (e.g., low percentage of MOS performing the task, taik not
difficult, task is seldom performed, low task proficiency decay, or
small number of hours to train) and a score of 'four' is an
"undesirable* rating (e.g., high percentage performing the task,
task is difficult, task frequently performed, high proficiency
decay, or large number of hours to train). These 'undesirable"
characteristics may result in a task that is referred to as a 'high
driver' of personnel and cost. The six task rating criteria are
listed in Table 1, and the sample data from five SMEs for the six
criteria are listed in Table 2.

Table 1. ECA Task Rating Criteria

Criteria Criteria
Abbrevi&tio"n DescriDtion

PP Percent Performing Task
TLD Task Learning Difficulty
TPD Task Performance Difficulty
FR Frequency Rate
DR Decay Rate
TT Time to Train

Table 2. SME Evaluations of One Task

SME PP UI J D TT

1 4 1 1 3 1 2
2 3 1 1 3 1 3
3 3 2 2 4 2 2
4 3 2 1 4 3 1
5 2 1 2 3 3 3

Average 3.0 1.4 1.4 3.4 2.0 2.2

The ECA methodology results in the calculation of a 'Task
Score' by computing the product of the averages of the SME scores.
Using the data above, the Task Score is:

3.0 x 1.4 x 1.4 x 3.4 x 2.0 x 2.2 a 87.96.

Using the ECA methodology, this Task Score is compared to an
established* cutoff score of 216. Since the Task Score is less
than 210, the task is not considered a 'High Driver.' The
procedure summarized above would be completed for each task to
identify the 'High Drivers' of the system being evaluated.

3



3. UNCERTAINTY AND RISK.

Whereas the ECA method provides useful information on currently
fielded systems, as we will see below, with modifications, it can
provide useful information on conceptual systems as well. The
modifications discussed below will enhance the basic methodology for
evaluating either conceptual or currently fielded systems. First,
note in Table 2, the SMEm have some disagreement in their
assessments of each of the six criteria. The ECA methodology seeks
to form a concensus by using the average value for each of the six
criteria. However, the variation of the SME evaluations is an
indication of their uncertainty. We could also argue that high
variation in SME opinion may be an indication of the likelihood that
problems will be encountered in the concept formulation phase of the
system acquisition process. Certainly, variation in SME opinion
translates into uncertainty.

To illustrate the need for further ECA methodology enhance-
ments, suppose that we could get another "set" of five SME
responses. On the basis of the first sample of five, we should
conclude that the second sample would probably also exhibit some
uncertainty. Of course, to gain "perfect' information on the
uncertainty of the SMEs (e,g., to determine their variation in task
criteria scores), we would have to gather every SME's opinion.
However, if we are willing to consider the first sample as
"representative" of any and all samples of SME opinion, we can use
probability and statistics to make inferences about the other
possible samples of SUE opinion.

If we carry the considerations on the SME sample further, with
some assumptions about the relationship between the six criteria, we
can use the SME uncertainty to provide us information on the "risk'
of the task as well. First, let us assume that the SMEs evaluated
each of the six criteria separately (that is, for example, criterion
one was not influenced by nor did it influence the rating given to
criterion two). We refer to this property as independence. This
assumption was implicitly built into the ECA methodology when the
Task Score was computed using the product of the average criteria
values. Although a desirable property, as discussed in the Post
Script (Section 9), independence is not necessary for the ECA
methodology.

We can consider the SUE criteria scores to be taken from a
distribution of scores. As we noted earlier, we cannot practically
collect all 3ME scores to gain "perfect" information, so we will use
this sample of SMEs to give us an idea of the distribution
characteristios. That is, we can use the sample characteristics to
estimate how the entire SME population would have scored each
independent criterion. First, we will construct a distribution of
possible criterion scores using the SME data to estimate key para-
meters which describe the distributions. Next, we will construct a
distribution of Task Scores by randomly drawing values from the
sample criterion distributions. The procedure for constructing the
Task Score distribution will be illustrated later. We will now
discuss the characteristics of the criterion distributions.
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There are several theoretically sound distributions to use.
The 'easiest* distribution would be a normal distribution whose
average and variance (or standard deviation) is estimated by the
sample data average and variance (or standard deviation). However,
we have to place some constraint on the distribution of possible
values. In a normal distribution, it is possible (but not very
probable) to have a score several standard deviations below the
average (or mean). This could equate to a meaningless score of "0"
or a negative criterion value. Since the sample of SMEs could not
provide any score other than a value between 1 and 4, we must
'truncate* the theoretical normal distribution so that only values
between 1 and 4 are possible. Of course, we could open up the
range of allowable SME scores, thereby permitting the SMEs to
provide more precise evaluations.

Another distribution that we could use is referred to as the
'triangle* distribution, which is characterized by the pessimistic
(low), most likely (average), and optimistic (high) scores. In the
triangle distribution, these three parameters are readily
determined using SME sample data and the distribution requires no
*truncation.* The implications on the choice of either the normal
or triangle distribuwion will be discussed later.

Other types of distributions may also be considered in the
risk/uncertainty analysis, and the selection of the type of
distribution certainly should not be based on "the easiest to use"
criterion. To help make an appropriate selection, the SME data
should be plotted to see if it resembles the proposed
distribution. SME responses need not be normally distributed (or
exhibit any particular type of distribution) to conduct a risk/
uncertainty analysis. Use of normal and/or triangle distribution
herein is a simple matter of convenience.

Given our acceptance of the six criteria and the ability to use
SME sample data to construct a distribution of all possible SME
scores (using the SME sample to estimate the population
parameters), we can now construct a theoretical population Task
Score by randomly sampling from each of the six distributions and
calculating the product of the randomly sampled values. The
process of constructing the distribution of Task Scores is
illustrated in Figure 1.

We note in Figure 1 that there is a "counter', which is
'iterated' or increased as we calculate Task Scores. Thus, each
particular count is frequently referred to as an 'iteration.* To
construct a 'good' distribution of Task Scores, several thousand
iterations wiLl normally be required, thus necessitating a computer
to automate the process. If we denote each randomly selected
(triangle or normal) criterion variable as X, (i a 1,2.3,4,5, or
0), then the J-th Task Score value is computed as:

Task Scorej a XXaX3X4XeXa (the product of criterion scores).
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We are now prepared to assess the uncertainty associated with
the task using the procedure illustrated in Figure 1. First, wecompute the Mean Product Task Score, which is simply the product of
the means of the mix criterion distributions (we know the means
mince we calculated them to describe the sample dimtribution
parameters for both the normal or triangle distributions). The
Uncertainty ares lies to the right of the Mean Product Task Score
as shown in Figure 2.

Uncfrtainlty

Area (43.4%)
04-

0 .35 I-.. . . . .. ..
00.35 Risk

B Area (7.9%)A 0.25 . . . .
B

0 0.2 -
LI 0.15s - -- . .. ... ......

TY 0.1 - ..... ..

0
0 200 400 600 800

TASK SCORE VALUE

Figure 2. Risk/Uncertainty Using Normal Criteria Distribution

The Uncertainty is most often expressed in terms of a
probability. We can esttimate the uncertainty probability by
counting the number of times the Task Score exceeds the Mean
Product Task Score. (Recall that the ECA methodology computed the
product of the ?ieans of the six criterion scores to compare to the
cutoff score.) The probability is then calculated by dividing this
count by the number of iterations or 'counter* value. For the
remultm shown in Figure 2, there were 434 times that the Task
Scores exceeded the Mean Product (87.965) out of the 1.000
iterations, so the uncertainty probability for this task example is
0.434.
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The uncertainty probability tells us that there is less than an
even chance (or probability less than 50 percent) that some other
sample of SEm could have given us a Task Score greater than the
Mean Product Tank Score. The uncertainty probability for the Task
Score distribution is a composite of the uncertainty (disagreement)
in the six criterion distributions. The value of uncertainty,
then, is entirely a result of this disagreement relative to an
average composite (Mean Product Task Score).

As we observed earlier, the ECA methodology compares the Task
Score to an established cutoff score of 21a. Now, however, we have
a Task Score distribution to compare to the established cutoff
score. The risk in the task is computed as a probability using a
procedure similar to that which calculated the uncertainty
probability. That is, we count each time that a Task Score value
exceeds the established cutoff value. The risk probability is
calculated by dividing that count by the number of iterations. For
the example in Figure 2, the risk probability is 0.079, a
moderately low value (some would say that a risk of 5 percent or
more is *significant).

What the risk probability is telling us is that despite a large
uncertainty (probability a 0.434), the likelihood that the SMEs (or
another sample of SMEs) would exceed the established cutoff value
is only 79 times out of 1,000 (probability a 0.079).

At this point, we must somewhat disassociate the uncertainty
from risk. In another situation, our SM~s could have absolutely
agreed on a rating for a task (uncertainty equals zero percent),
but the Task Score could have exceeded the critical value (risk
equals 100 percent). Also, as we will see later, it is entirely
possible for the risk probability to exceed the uncertainty
probability. Thus, uncertainty does not necessarily cause or lead
to risk.

So far, using this methodology, we can provide management with
not only the *standard* ECA methodology information, but we can
also quantify the risk and uncertainty as well. As we will see,
however, we can provide even more information to a decision maker.

Perhaps the easiest enhancement to make (with the intention to
provide more information) is to change the established cutoff
scores to 'critical" values which are 'tailored' to the situation
being evaluated. From Figure 2, it can be seen that raising or
lowering the critical value will affect the value of the risk. The
value 216 (the ECA methodology established cutoff value) is
arbitrary and may be considered to be too low or too high,
depending on the situation being evaluated. Also, we compute a
particular Task Score by forming the product of individual
criterion scores. By working 'backwards,* we can conclude that
each criterion has a cutoff imputed which is the sixth-root of 216,
or roughly 2.45 (that is, 2.45 to the sixth power is about 216).
This means that we have established that any score for any



criterion above 2.45 is a *risk* indicator. As we sampled from the
six criteria and formed our distribution of Task Scores, we added
up the counts of those Task Scores which consistently exceeded the
critical value, thereby giving us a 'risk* assessment.

4. IMPORTANCE AND WEIGHTS.

At this point, we might make an observation that we may not
consider each criterion to have equal importance in determining
risk. The importance issue can be explicitly addressed by
"weighting" the criteria differently. Assume for the moment that
we obtained the following 'importance' weights from our panel of
SMEs using a procedure which we will explain below:

Table 3: Example of Importance Weights.

Normalized
Distribution Relatiye ImDortance Weights

PP 10 1.50
TLD 5 0.75
TPD 1 0.15
FR 18 2.70
DR 2 0.30
TT -0j

TOTAL 40 5.00

In the column labeled 'Relative Importance' in Table 3, FR is
not only the most important criterion, it is 18 times the
importance of TPD, as determined by our SME sample using the
procedure which will be discussed below. These values of *Relative
Importance' must be transformed into weights, where the values of
the weights must have certain properties.

First, since we have six criteria, the sum of the weights must
equal six. This is needed to enable us to compare "weighted'
results to "unwaighted" results. (Actually, unweighted results
have an imputed relative importance for each criteria of 1, so the
sum of the relative importance equals the number of criteria). We
can transform or "normalize" the relative weights by dividing each
of the relative weights by their total and multiplying by the value
a. The normalized weights are in the right column of Table 3.
(For example, the weight for PP is found by dividing the Relative
Importance by 40 and multiplying the result by 8). We see that the
ratio of the weights is the same as the ratio of the relative
importance. For example, the PP to TPD ratio is 10/1 for the
relative importance and 1.50 to 0.15 for the weight. The ratio of
importance has been preserved so that the 1.50 weight is still 10
times the 0.15 TPD weight.

To perform a risk/uncertainty analysis using weighted
(importance) criteria and Task Scores, the calculation procedure is
changed somewhat as follows:

9



Task Score - X&W S x XsWoS x ... x Xaw' ,

Risk Value a CVxw l x CV2-*a x ... CVow%*, and

Mean Product Test Score a Xt-*& x Xawaa x ...

Where X, is a randomly selected score from the i-th criterion
distribution (i a 1, 2, ... 0 criteria),

CVj is the critical value (constant) for the J-th

criterion, and

X, is the mean of the J-th criterion distribution.

Thus, the weights are exponents for the variables which are used
for determining the Task Score distribution, critical value, and
Mean Product Task Score. When each weight (wti) has a value of
1.0, the results are identical to the previous discussion results
using "unweighted" values.

There are several similar techniques which use the geometric
mean for calculating weights. Care should be taken, however, to
assure that the 'normalizing' process results in weights whose sum
equals the number of criterion. Also, other techniques impose a

Risk

Area (75.2%)
0.3

p Uncertainty

R 0 2 5  
-Area (45.4%)

0

B 0.2 -
A
B
I 0.15 - -

L

0.1
T "

Y
0.05 -...

0
0 500 1000 1500 2000

TASK SCORE VALUE

Figure 3. Weighted Uncert&inty/Risk Using Normal Criteria
Distributions
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range of allowable scores (e.g., a fixed response scale) and require
pair-wise comparisons of every criterion to every other criterion.
Obviously, if a task is evaluated on a large number of criterion,
the number of pair-wise comparisons could become large. See
References c(3) and c(4) in Section 8.

Using the weighting procedure and the weights in Table 3, we
obtain the Distribution of Task Scores shown in Figure 3.

The only change in the method used to generate Figure 3 and
Figure 2 is that Figure 2 had equal criteria importance (weights)
and Figure 3 used unequal importance (weights in Table 3). Note,
however, there is a somewhat modest increase in Uncertainty, but a
very large risk probability of 75.2 percentl Admittedly, the
importance values were selected to give such a dramatic change in
risk to illustrate a point. From Table 3, PP and FR had the largest
weights nd from Table 2, these also had the highest averages. This
means that the contribution to the Task Score distribution due to
these two criteria was far more than the contribution due to the
other four criteria. Obviously, then, high criterion scores
translate into high Task Scores, which translated into high risk.
The point being illustrated is that risk is influenced by the
importance placed on the criteria and is not influenced by the
uncertainty of the SMEs.

Using Table 4, we can illustrate one method for calculating

importance weights.

Table 4. Relative Weight Example.

CRITERIONMM I* EA 2A T

1 9.0 4.0 1.0 11.0 3.0 7.0
2 10.0 7.0 1.0 20.0 1.5 2.5
3 le.0 5.0 1.0 25.0 0.5 3.0
4 8.0 4.0 1.0 18.0 3.8 3.0

Geometric 10.0 5.0 1.0 18.0 2.0 4.0
Mean *e

Arbitrarily set to 1.0 as *reference'
w ,Rounded to a whole number

For PP, the Geometric Mean a 5/PP1 x PPj x PP. x..PPs

A similar caLlculation is used for other 5 criterion geometric
means.

In Table 4, SME 1 felt that PP was nine times as important as
(relative to) criterion TPD, which was given a reference value of
1.0. Thus, each SME rates each criterion importance relative to the
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reference criterion, so the values are relative importance (relative
to the "reference'). We note here, as in the SNE evaluations in
Table 2, that the SME have some uncertainty in their assessment of
relative importance. The Geometric Mean is simply the 5-th root of
the product of the SME scores for each criterion. The 5-th root is
used in this case, since we have five SMEs. If we have "n" SMs, we
would take the n-th root of the product of the SME relative
importance values for each of the six criterion. It may occur that
several SMEs would consistently rate a criterion lower than 1.0 (the"reference'). We can see that SME 3 rated DR at 0.5 (meaning
'lower* or 1/2 as important as the reference). If the SMEs
consistently rate a criterion at les than the "reference,' the
Geometric Mean will also be lower than 1.0. We saw in Table 3 how
the Relative Weights (Geometric Means) are converted into
"normalized' weights. We should also observe that no negative or
zero values are allowed an SME relative weights since such an
evaluation has no practical meaning. (If the SM! feels that the
importance of a criterion is very small, a value such as 10- 0
could be given, but not zero. &an zero value will make the
geometric mean equal to zero regardless of S11 of the other scores.
The *dampening* effect caused by one SME providing very small
numbers decreases rapidly as the number of SMEs (e.g., the sample
size) increases to the 20-30 range.

As with the calculation of the Task Scores (which is similar to
the Geometric Mean in that it involves taking the product of
numbers), the use of the geometric mean for calculating the
importance weights requires several assumptions to be met and, as
will be shown, 'builds* certain properties into the values thus
calculated.

First, we must assume that the SMEs rank the relative importance
of each criterion independently of each other and that the ranking
of one criterion does not affect (or is not influenced by) another
criterion (other than the *reference' criterion). Secondly, we must
also assume that the values given by the SMEs are samples of all
possible SME values. With theme two assumptions, we can use the
properties of the SM! relative importance distribution to infer
something about the importance of the criterion if we could get all
SMEs (vs. a sample only) to rate the criterion.

However, unlike our sampling procedures used to build the Task
Score Distribution, we need a set of specific weights to use. Yet,
we want certain statistical properties to be present when we
calculate these weights. The two desired statistical properties are
that the procedure should capture both the overall (concensus) value
and be sensitive to wide variations in SM! ratings (e.g.,
uncertainty or disagreement). Thus, the selection of the techniques
for calculating the importance weights is not arbitrary: it must
possess certain properties. The data in Table 5 will be used to
illustrate the effect of disagreement of SMhs on several commonly
used statistics.
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Table 5. Illustration of Statistical Properties

Alternatives
S1VE 1 2 3
1 4.50 3.00 7.00
2 5.00 3.80 1.00
3 3.00 4.00 7.00
4 2.00 3.00 4.00
5 3.00 4.60 1.00

Mean 3.50 3.80 4.00
Variance 1.20 0.51 7.20
Geometric Mean 3.32 3.73 2.87

Illustrated in Table 5 are the scores by five SM~s on three
alternatives. The particular interpretation of the meaning of the
alternative or score is not important. If we were to select an
alternative with the highest mean (average), we would select
Alternative 3, with a mean of 4.0. Note, however, that Alternative
3 had the most *disagreement' among the SMEs as evidenced by the
highest variance. On the other hand, Alternative 2 has a somewhat
lower mean (3.80) and has the lowest variance (hence, the most
agreement by the SMEs).

The geometric mean has the property that the highest value is
achieved when the variance is the lowest when the mean remains
constant. For example, try any three positive (not zero) numbers
that add to some value. Change the numbers at will so long as their
sum remains the same. We will find that the geometric mean of the
three numbers will always be less than or equal to the arithmetic
mean (the average) and will equal the arithmetic mean only when all
three numbers are identical (e.g., the variance is zero).

The implication of this is that the geometric mean combines some
properties of both an ordinary average and a variance. Using this
technique for calculating the relative weights 'builds' in several
desirable statistical properties. First, if one relative weight is
greater than another (is more important), it must have consistently
higher scores nd4 the SMEs must agree that that it is an important
criterion (the variance is low). Conversely, a particular criterion
may have a low weight (importance) either because all of the SMEs
uniformly rated it low or the criterion had a large variance in
score (the SMEs disagreed on its importance).

5. TASK CRITERIA DISTRIBUTIONS.

Thus far, we have not discussed the implications of the choice
between a normal or triangle distribution for the six criteria.
Figures 2 and 3 respectively showed the unweighted and weighted
distribution of Task Scores using a normal distribution for all six
criteria (the distributions differ, however, in their mean and
variance, but look alike in that they are normally distributed). In
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the unweighted case, we found a small but Significant risk
probability of 0.079. Figures 4 and 5 show the unweighted and
weighted Task Scores, respectively, using all triangle distributionsfor the six criteria (each has the lowest SMI value, the average,and the highest SME value &a its parameters).

Uncertainty

Area (51.3%)

0.25

R a~
0 Area (0.4)

B0.1

A
B
1 0.1
L
I
T o.o5 ...
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0"
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TASK SCORE VALUE

Figure 4. Unweighted Task Scores Using Triangle Distributions
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Figure 5. Weighted Task Scores Using Triangle Distributions
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From Figure 4, we can see that the risk probability decreased
substantially (0.4 percent), while the uncertainty probability
increased somewhat (51.3 percent) relative to the results in Figure
2. In this situation, this is to be expected since the triangle
distribution 'cuts off* some of the values which the normal
distribution allows (even though the normal distribution is
"truncated'). For example, with a triangle distribution with low
3.0, medium a 3.4, and high a 4.0, there will be no criterion scores
generated lower than 3.0. However, a normal distribution with an
average equal to the triangle distribution's average (3.4) can have
values lower than 1 or higher than 4 were it not for the 'trunca-
tion' which we imposed (note, truncation takes place because we
imposed a limit of a score from on to four on the SME's choice, and
therefore, we impose this on allcwable criterion scores as well).

The triangle distribution with a *high* (optimistic) parameter
of 2.0 can generate values no higher than 2.0. However, for the
same critorion with a normal distribution with mean of 1.4 and
standard deviation of 0.55, random numbers up to two standard
deviations should be generated (value of 2.5). Thus, the triangle
distribution generates lower criterion values, meaning it gives a
lower estimate of risk in this case. This change may not always be
present when 'real' data and situations are used (for example, if a
triangle distribution has & low value of 1 and a high value of 4, it
will provide values as high and low as a normal distribution with a
mean of 2.5 and variance of 1.0. However, the frequency of high and
low values will differ between the normal and triangle distribution.

Note, however, that the risk in Figure 5 has increased from the
risk in Figure 3 even though the only change is in the distribution
types for the criterion variables. Whereas Figure 3 used the same
weights used in Figure 5, the criterion distributions changed from
normal to triangle and the riak increased because of the weighting
and the type of distribution of the criterion variables.

The practical implication of this discussion is that the choice
of the scales for SMEs to rate is critical (in this discussion, the
allowable range was 1 to 4 to reflect the ECA methodology). When
the range of the seale is increased, we will most likely see more
variation in responses, but the risk/uncertainty methodology can
accommodate this much better than the KCM methodology. In fact, to
get a better risk/uncertainty assessment, the range of allowable
scores for SMhs should be widened to the maximum extent possible.

8. OVERALL RISK.

Thus far, we have explicitly addressed the rixk/uncertainty of a
single task. Assume, for purposes of illustration, that the
proposed system has ten tasks that are independent (that is the
completion of one task is not dependent on and does not affect the
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completion of another task). By applying the risk/uncertainty
analysis as previously discussed, we can obtain the risk/uncertainty
of each individual task. Through probability theory, am shown
below, we can determine the overall risk for the proposed system.
This, of course, implies that we could select one alternative
configuration over another by computing the alternative risks and
selecting the lowest risk alternative. Additionally, if the overall
risk is too high, we can 'backtrack' through the analysis to find
the high risk/uncertainty tasks/criteria and single these areas out
for further study. Study, would then be used to reduce the
uncertainty/risk by 'getting a handle' on what the source of the
high risk is.

Table 8 illustrates the risk assessments of six independent
tasks for a proposed system. We should note that these are
individual tasks, and are = the criteria used to evaluate a task
as shown in Table 2. We can calculate the overall risk by taking
the product of the "unrisk" (that is, one minus the value of the
risk) and subtracting the result from 1 as shown below:

Table 8. Multitask Risk Assessment

tAL" Risk L xk

1 0.20 0.80
2 0.10 0.90
3 0.01 0.99
4 0.30 0.70
5 0.01 0.99
a 0.35 0.85

Overall Risk z 1-C(.80) x (.90) x (.99) x (.70) x (.99) x (.85)]

a 0.879.

Overall, there is a high risk for this system (probability
0.e79). By *backtracking,' we can see that there are three tasks
(1, 4, and 8) that are significant factors in the overall risk
determination. Further 'backtracking' can be done to point to
specific risk areas (the criterion) and provide management with a
means of selectively using further study and analysis to reduce
risk/uncertainty and to identify issues needing more intensive
investigations.

If the tasks are not independent, we should not use the product
form of overall risk. A computer model of the analysis could be
developed to assess the risk if the type of task dependency is
known. Also, some tasks may be more important than others (for
example, some task may cost more than others), so an overall risk
determination can be made using task weights and a methodology
similar to the weighting of criterion distributions. There would be
a variety of methods which could be used (including SME opinion) to
determine appropriate task weights.
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The use of techniques which reduce a set of data to only an
average do not permit us to use all of the information which might
be obtained from our Subject Matter Experts (SME1). By explicitly
considering the SME disagreement, we can determine uncertainty, and
by comparing the calculated Task Scores to an appropriate critical
value, we can c&lculate the risk in proposed materiel acquisition
systems.

This uncertainty and risk analysis can be used to guide the
needs for further analysis to reduce the risk that critical tasks
will become 'high drivers' in the acquisition process. SMUs can
also provide valuable information on the importance of individual
criteria used to evaluate the proposed system, thereby directly
influencing the determination of the risk as well.

We have seen that a high uncertainty does not necessarily imply
a high risk. Uncertainty has to do with the amount of disagreement
of our experts and risk has to do with the likelihood that some
critical consideration will exceed some predetermined value.

We have also observed that the choice of scales that the SMUs
use in evaluating the criteria will definitely affect the risk/
uncertainty determination since values will be 'truncated* when we
sample from the SME criteria distributions. Accordingly, when
performing a risk/uncertainty ECA, the range of allowable SUR
responses should be widened an far as possible so as not to restrict
unnaturally the choice of SUN scores (thereby decreasing our ability
to assess their disagreement and hence, uncertainty).
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9. A POST SCRIPT.

The objective of this paper is to be provocative. Admittedly,

there are many considerations which have not been addressed. The
purpose of the paper is to illustrate that existing methodology can

be expanded when proper consideration is given to the analytical

methodologies.
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When the first draft* of the paper were distributed for
comments, several discussion points emerged. Although the
discussion below may not address all such possible considerations
(the literature abounds in such considerations), it does address and
illustrate the need for further work in the ECA methodology. The
discussion below concludes with a recommendation on the development
of an Expert System for use by non-technical people. Such a system
would have built in features to appropriately incorporate the
theoretical considerations discussed below.

Independence of criterion scores loomed as a major concern to
several readers. If we were using the criterion scores to build an
index or some other scale which could be used to estimate or predict
a proposed weapon system's performance, we would want them to be
independent in a statistical sense as well as independently
evaluated by our SMus. In the use of ECA methodology, there is
evidence to suggest that Task Learning Difficulty (TLD) and
Time-to-train (TT), for example, are not statistically independent.
Other criteria (or subscores) may also be correlated. Therefore,
when we multiply the six criterion variables to obtain the ECA
score, one might argue that the score is biased because of the
correlation between the subscores. For the ECA methodology however,
the independence consideration is not an issue.

We are interested in r measurements. Unlike an IQ, for
example, which might be estimated by a series of subscores on a
"standardized ° test, the ECA score has no intrinsic value in and of
itself. The ECA score takes on importance only with respect to some
arbitrarily established cutoff point which is a composite of the
individual subscores themselves. Any 'bias' in the ECA score will
be similarly present in the cutoff score.

If we insist on concerning ourselves with correlation between
subscores or criterion variables, we might look at several possible
causes of correlation. To a large extent, the reason for dependency
rests in the use of a very restricted range of SME allowable
scores. Certainly, widening the allowable range of scores (e.g.,
from a 1 to 4 range to a range of 1 to 7) gives the SV more
choices. If SMs use the increased range, we should see the
'dependency' reduced. Suppose, for example, that five SMs rate a
criterion which has a range of 1-4 for allowable scores. The first
four can each select a different score, but the fifth must select a
score which duplicates at least one of the previous four SME
scores. Thus, the SME scores will become statistically dependent
simply because we restricted the allowable range of scores. If we
expand the range, we increase the allowable responses. Thus, an
objective of increasing the allowable range is to increase the
variance in the SMR response (assuming, of course, that the SME will
use the increased range). However, the wider allowable range of
scores may increase the SMEs' difficulty in discerning more subtle
differences in the ratings.

20



If, nonetheless, a reasonable goal is to increase variance,
another variance-increasing technique actually is present in the ECA
methodology. The product form of the ECA creates the maximum
variance in the ECA score where there is little variance in the
individual subsoores. Recall that the risk/uncertainty method is
essentially concerned with variance. Variance in SME opinion
translates into uncertainty. Variance in ECA scores that are above
a certain 'critical' value is a measurement of risk. Variance is
caused by disagreement of the SME. Thus, we want a method which
calculates the most variance from our sample of SMES.

Note that a method which calculates an average score not only
does not generate the maximum variance, it also allows for
• compensatory* ratings. That is, if one SME scores one point above
the average and another scores one point below the average, for
example, then the two SME have compensated for each other, thereby
" averaging out' their disagreement. The product form of the SCA
allows for no such averaging out or compensation of SME scores and,
in fact, allows us to focus on disagreement.

Another cause for apparent dependency may be that the criterion
variables are, indeed, related. For example, if a task is difficult
for the soldiers to learn, it probably is also difficult to train,
and difficult training tasks most likely will take more time to
train. Hence, TLD and TT might reasonably be expected to be related
or dependent.

If, however, we wish to construct an ECA score which accounts
for such dependency, we can simply weight the individual subscores
by some appropriate value. For example, if TLD and TT were the only
two correlated subxcores, we could give each one a weight of
one-half. Another technique for handling the correlated variables
is to perform a factor analysis on the criterion variables to
determine the minimum number of independent factors and the equation
which transforms linear combinations of subscores into factor
scores. The risk/uncertainty method can then be applied to the
factor scores. We could also expand the number of subscores and use
one of several available techniques (discussed above) to adjust for
dependency if we feel this is necessary.

The point being made is that the lack of independence in our
subseores is not a sufficient reason to discount the usefulness of
the ECA methodology nor should it even necessarily be a concern. We
are not necessarily after an absolute measurement scale. If we L1.
concerned about correlated subscores, techniques exist to ameliorate
perceived difficulty.

This paper obviously did not address a number of other issues
concerning the use of the ECA methodology. For example, the issue
of inter-rater reliability should be addressed in the adequacy of
the design of the data collection instrument.
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This paper also did not deal with how the results could be
implemented. The analysis portion of the ECA risk/uncertainty
methodology has been automated. We propose that an Expert System
for SCA be developed as an Artificial Intelligence application. The
system would include a processor which would allow the user to
*tailor' the questions for SME to rate and would have various
consistency checks built in (i.e., internal rater consistency,
inter-rater reliability, etc.). Obviously, such a capability will
take more eofort to complete, so this paper should be viewed as only
a start in the process.
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The Early Comparability Analysis (ECA) methodology was
developed by the US Army Personnel Integration Command (USAPIC) and
was approved for use as & Manpower Personnel Integration (MANPRINT)

* methodology in February, 1985. It was designed as a lessons
learned approach for analyzing those tasks performed by soldiers on
currently fielded systems. In addition, it was designed to be
easily performed by TRADOC action officers using resources that are
readily available. The identification of *high driver' tasks,
those tasks which significantly affect Manpower, Personnel, and
Training (MPT) resources, is completed by a relatively simple
screening mechanism. The labor intensive work is to conduct a task
analysis on the high driver tasks.

Many potential enhancements to the methodology, according to
USAPIC, were deliberately omitted in the design of the methodology
even though they may have been somewhat beneficial. The overall
design goal was to keep the methodology easy to perform.

With modifiation, the basic ECA methodology can also be applied
to conceptual systems early in the materiel acquisition process.
This report demonstrates how risk and uncertainty measurement
techniques can be applied to the basic ECA methodology to permit an
early MPT assessment for a conceptual system. In addition, the
techniques can be applied to fielded systems. The risk and
uncertainty procedures provide a means of making the RCA effort to
identify high drivers more rigorous if the resources to do so are
available.
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